Room temperature polymerization of poly(3,4-ethylenedioxythiophene) as transparent counter electrodes for dye-sensitized solar cells

Poly(3,4‐ethylenedioxythiophene) (PEDOT) counter electrode is prepared with in situ polymerization of 3,4‐ethylenedioxythiophene on a fluorine‐doped tin oxide over‐layer glass at room temperature. The cyclic voltammetry, electrochemical impedance spectroscopy, and Tafel polarization are measured to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymers for advanced technologies 2014-12, Vol.25 (12), p.1560-1564
Hauptverfasser: Gao, Suwen, Lan, Zhang, Wu, Wanxia, Que, Lanfang, Wu, Jihuai, Lin, Jianming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Poly(3,4‐ethylenedioxythiophene) (PEDOT) counter electrode is prepared with in situ polymerization of 3,4‐ethylenedioxythiophene on a fluorine‐doped tin oxide over‐layer glass at room temperature. The cyclic voltammetry, electrochemical impedance spectroscopy, and Tafel polarization are measured to evaluate the catalytic activity of PEDOT counter electrode for I3−/I− redox couple. Comparing the data with that of traditional thermal decomposed Pt counter electrode, it is found that PEDOT has higher catalytic activity than that of Pt counterpart. Power conversion efficiency of the dye‐sensitized solar cell (DSC) with PEDOT counter electrode can attain to 7.713%, a little higher than that of the cell with Pt counter electrode (7.300%). Taking the advantage of high transparency of PEDOT counter electrode, an Ag mirror is put on the back side of PEDOT counter electrode of the DSC to reflect light back for power conversion. Power conversion efficiency of the DSC with this special structure can be further enhanced to 8.359%, which mainly stems from the improved short‐circuit current density by the increased irradiated light intensity. Copyright © 2014 John Wiley & Sons, Ltd.
ISSN:1042-7147
1099-1581
DOI:10.1002/pat.3402