Effects of Pre-Aging and Natural Aging on Bake Hardening Behavior in Al-Mg-Si Alloys

The effects of pre-aging and natural aging on the bake hardening behavior of Al-0.62Mg-0.93Si (mass%) alloy with multi-step aging process were investigated by means of Vickers hardness test, tensile test, differential scanning calorimetry analysis (DSC) and transmission electron microscopy (TEM). Th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials science forum 2014-06, Vol.794-796, p.1026-1031
Hauptverfasser: Sato, Tatsuo, Takaki, Yasuo, Kozuka, Masaya, Aruga, Yasuhiro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The effects of pre-aging and natural aging on the bake hardening behavior of Al-0.62Mg-0.93Si (mass%) alloy with multi-step aging process were investigated by means of Vickers hardness test, tensile test, differential scanning calorimetry analysis (DSC) and transmission electron microscopy (TEM). The characteristics of nanoclusters (nano scale solute atom clusters) formed during pre-aging and natural aging were also investigated using the three dimensional atom probe (3DAP) analysis. The results revealed the occurrence of natural age hardening and that the bake hardening response was decreased after the extended natural aging even though the pre-aging was conducted before natural aging. Since the 3DAP results exhibited the Si-rich clusters were newly formed during extended natural aging, it was assumed that the Si-rich clusters caused the natural age hardening and the reduced bake hardening response corresponding to Cluster(1). The decrease of the bake hardening response was markedly higher in the later stage of bake hardening than in the early stage. The size of the β’’ precipitates were reduced with increasing the natural aging time. Exothermic peaks of Peak 2 and Peak 2’ were observed in the DSC curves for the alloys pre-aged at 363K. Peak 2’ became larger with the natural aging time. This is well understood by the following model. The transition from Cluster(2) to the β’’ phase occurs preferentially at the early stage of the bake hardening. Then the growth of the β’’ phase is inhibited by the presence of Cluster(1) at the later stage of bake hardening. The combined formation of Cluster(1) and Cluster(2) by the multi-step aging essentially affects the bake hardening response and the β’’ precipitates in the Al-Mg-Si alloys.
ISSN:0255-5476
1662-9752
1662-9752
DOI:10.4028/www.scientific.net/MSF.794-796.1026