Molecular-Level Switching of Polymer/Nanocrystal Non-Covalent Interactions and Application in Hybrid Solar Cells

Hybrid composites obtained upon blending conjugated polymers and colloidal semiconductor nanocrystals are regarded as attractive photo­active materials for optoelectronic applications. Here it is demonstrated that tailoring nanocrystal surface chemistry permits to control non‐covalent and electronic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2015-01, Vol.25 (1), p.111-119
Hauptverfasser: Giansante, Carlo, Mastria, Rosanna, Lerario, Giovanni, Moretti, Luca, Kriegel, Ilka, Scotognella, Francesco, Lanzani, Guglielmo, Carallo, Sonia, Esposito, Marco, Biasiucci, Mariano, Rizzo, Aurora, Gigli, Giuseppe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Hybrid composites obtained upon blending conjugated polymers and colloidal semiconductor nanocrystals are regarded as attractive photo­active materials for optoelectronic applications. Here it is demonstrated that tailoring nanocrystal surface chemistry permits to control non‐covalent and electronic interactions between organic and inorganic components. The pending moieties of organic ligands at the nanocrystal surface are shown to not merely confer colloidal stability while hindering charge separation and transport, but drastically impact morphology of hybrid composites during formation from blend solutions. The relevance of this approach to photovoltaic applications is demonstrated for composites based on poly(3‐hexylthiophene) and lead sulfide nanocrystals, considered as inadequate until this report, which enable the fabrication of hybrid solar cells displaying a power conversion efficiency that reaches 3%. By investigating (quasi)steady‐state and time‐resolved photo‐induced processes in the nanocomposites and their constituents, it is ascertained that electron transfer occurs at the hybrid interface yielding long‐lived separated charge carriers, whereas interfacial hole transfer appears hindered. Here a reliable alternative aiming to gain control over macroscopic optoelectronic properties of polymer/nanocrystal composites by mediating their non‐covalent interactions via ligands' pending moieties is provided, thus opening new possibilities towards efficient solution‐processed hybrid solar cells. Hybrid nanocomposites with switched morphology are obtained by mediating non‐covalent interactions between conjugated polymers and semiconductor nanocrystals via the pending moiety of organic ligands at the nanocrystal surface. Morphology switching deeply impacts the optoelectronic properties of polythiophene/PbS nanocrystal composites, as demonstrated by achieving unprecedented photovoltaic device performances for this blend material. Photo‐induced processes at the hybrid interface are investigated and discussed.
ISSN:1616-301X
1616-3028
DOI:10.1002/adfm.201401841