A Single Protein Catalyzes Both N-Deacetylation and N-Sulfation During the Biosynthesis of Heparan Sulfate
Heparan sulfate is a highly sulfated carbohydrate polymer that binds to and modulates the activities of numerous proteins. The formation of these protein-binding domains in heparan sulfate is dependent on a series of biosynthetic reactions that modify the polysaccharide backbone; the initiating and...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 1993-05, Vol.90 (9), p.3885-3888 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Heparan sulfate is a highly sulfated carbohydrate polymer that binds to and modulates the activities of numerous proteins. The formation of these protein-binding domains in heparan sulfate is dependent on a series of biosynthetic reactions that modify the polysaccharide backbone; the initiating and rate-limiting steps of this process are the N-deacetylation and N-sulfation of N-acetylglucosamine residues in the polymer. We now report that in the rat liver, biosynthesis of heparan sulfate utilizes a single protein that possesses both N-deacetylase and N-sulfotransferase activities. This was accomplished by demonstrating that both activities resided in a purified soluble fusion protein containing the Golgi-lumenal portion of the enzyme. We propose that this protein be renamed the rat liver Golgi heparan sulfate N-deacetylase/N-sulfotransferase. |
---|---|
ISSN: | 0027-8424 1091-6490 |
DOI: | 10.1073/pnas.90.9.3885 |