Periostin is temporally expressed as an extracellular matrix component in skeletal muscle regeneration and differentiation

The transcriptional events and pathways responsible for the acquisition of the myogenic phenotype during regeneration and myogenesis have been studied extensively. The modulators that shape the extracellular matrix in health and disease, however, are less understood. Understanding the components and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Gene 2014-12, Vol.553 (2), p.130-139
Hauptverfasser: Özdemir, Cansu, Akpulat, Uğur, Sharafi, Parisa, Yıldız, Yılmaz, Onbaşılar, İlyas, Kocaefe, Çetin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The transcriptional events and pathways responsible for the acquisition of the myogenic phenotype during regeneration and myogenesis have been studied extensively. The modulators that shape the extracellular matrix in health and disease, however, are less understood. Understanding the components and pathways of this remodeling will aid the restoration of the architecture and prevent deterioration under pathological conditions such as fibrosis. Periostin, a matricellular protein associated with remodeling of the extracellular matrix and connective tissue architecture, is emerging in pathological conditions associated with fibrosis in adult life. Periostin also complicates fibrosis in degenerative skeletal muscle conditions such as dystrophies. This study primarily addresses the spatial and temporal involvement of periostin along skeletal muscle regeneration. In the acute skeletal muscle injury model that shows recovery without fibrosis, we show that periostin is rapidly disrupted along with the extensive necrosis and periostin mRNA is transiently upregulated during the myotube maturation. This expression is stringently initiated from the newly regenerating fibers. However, this observation is contrasting to a model that displays extensive fibrosis where upregulation of periostin expression is stable and confined to the fibrotic compartments of endomysial and perimysial space. In vitro myoblast differentiation further supports the claim that upregulation of periostin expression is a function of extracellular matrix remodeling during myofiber differentiation and maturation. We further seek to identify the expression kinetics of various periostin isoforms during the differentiation of rat and mouse myoblasts. Results depict that a singular periostin isoform dominated the rat muscle, contrasting to multiple isoforms in C2C12 myoblast cells. This study shows that periostin, a mediator with deleterious impact on conditions exhibiting fibrosis, is also produced and secreted by myoblasts and regenerating myofibers during architectural remodeling in the course of development and regeneration. •Periostin expression was compared in acute and chronic muscle degeneration models.•Periostin is temporally expressed in the myofibers of the regenerating muscle tissue.•Periostin expression is documented in in vitro models of muscle differentiation.•Periostin expression in regeneration deduced tissue remodeling but not fibrosis.•Genomic structure and splicing pattern of rodent
ISSN:0378-1119
1879-0038
DOI:10.1016/j.gene.2014.10.014