Minocycline-induced attenuation of iron overload and brain injury after experimental germinal matrix hemorrhage

Abstract Germinal matrix hemorrhage (GMH) is the most important adverse neurologic event during the newborn period. Evidence has shown that neonates with GMH and hydrocephalus have more severe damage compared to those with GMH alone. Our preliminary study demonstrated the role of iron in hydrocephal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Brain research 2015-01, Vol.1594, p.115-124
Hauptverfasser: Guo, Jing, Chen, Qianwei, Tang, Jun, Zhang, Jianbo, Tao, Yihao, Li, Lin, Zhu, Gang, Feng, Hua, Chen, Zhi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract Germinal matrix hemorrhage (GMH) is the most important adverse neurologic event during the newborn period. Evidence has shown that neonates with GMH and hydrocephalus have more severe damage compared to those with GMH alone. Our preliminary study demonstrated the role of iron in hydrocephalus and brain damage in adult rats following intraventricular hemorrhage. Therefore, the aim of the current study was to investigate iron accumulation and iron-handling proteins in a rat model of GMH and whether minocycline reduces iron overload after GMH and iron-induced brain injury in vivo. This study was divided into two parts. In the first part, rats received either a needle insertion or an intracerebral injection of 0.3 U of clostridial collagenase VII-S. Brain iron and brain iron handling proteins (heme oxygenase-1 and ferritin) were measured. In the second part, rats with a GMH were treated with minocycline or vehicle. Brain edema, brain cell death, hydrocephalus, iron-handling proteins and long-term motor function were examined. The result showed iron accumulation and upregulation of iron-handling proteins after GMH. Minocycline treatment significantly reduced GMH-induced brain edema, hydrocephalus and brain damage. Minocycline also suppressed upregulation of ferritin after GMH. In conclusion, the current study found that iron plays a role in brain injury following GMH and that minocycline reduces iron overload after GMH and iron-induced brain injury.
ISSN:0006-8993
1872-6240
DOI:10.1016/j.brainres.2014.10.046