One-step refolding and purification of recombinant human tumor necrosis factor-α (rhTNF-α) using ion-exchange chromatography

Protein refolding is a key step for the production of recombinant proteins, especially at large scales, and usually their yields are very low. Chromatographic‐based protein refolding techniques have proven to be superior to conventional dilution refolding methods. High refolding yield can be achieve...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomedical chromatography 2015-02, Vol.29 (2), p.305-311
Hauptverfasser: Wang, Yan, Ren, Wenxuan, Gao, Dong, Wang, Lili, Yang, Ying, Bai, Quan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Protein refolding is a key step for the production of recombinant proteins, especially at large scales, and usually their yields are very low. Chromatographic‐based protein refolding techniques have proven to be superior to conventional dilution refolding methods. High refolding yield can be achieved using these methods compared with dilution refolding of proteins. In this work, recombinant human tumor necrosis factor‐α (rhTNF‐α) from inclusion bodies expressed in Escherichia coli was renatured with simultaneous purification by ion exchange chromatography with a DEAE Sepharose FF column. Several chromatographic parameters influencing the refolding yield of the denatured/reduced rhTNF‐α, such as the urea concentration, pH value and concentration ratio of glutathione/oxidized glutathione in the mobile phase, were investigated in detail. Under optimal conditions, rhTNF‐α can be renatured and purified simultaneously within 30 min by one step. Specific bioactivity of 2.18 × 108 IU/mg, purity of 95.2% and mass recovery of 76.8% of refolded rhTNF‐α were achieved. Compared with the usual dilution method, the ion exchange chromatography method developed here is simple and more effective for rhTNF‐α refolding in terms of specific bioactivity and mass recovery. Copyright © 2014 John Wiley & Sons, Ltd.
ISSN:0269-3879
1099-0801
DOI:10.1002/bmc.3276