The effects of physical and chemical treatments on Na2S produced feather keratin films

The industrial utilisation of feather keratin as a biopolymer has proven difficult due to the lack of a viable extraction technique and the poor mechanical properties of the regenerated products. Here, pure keratin films were produced from chicken feathers using sodium sulphide as sole extraction re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of biological macromolecules 2015-02, Vol.73, p.99-108
Hauptverfasser: Poole, Andrew J., Church, Jeffrey S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The industrial utilisation of feather keratin as a biopolymer has proven difficult due to the lack of a viable extraction technique and the poor mechanical properties of the regenerated products. Here, pure keratin films were produced from chicken feathers using sodium sulphide as sole extraction reagent in a scheme that allows films to be formed without residual chemicals. In a comparison to other films, those produced using Na2S extraction were found to be superior to other regenerated protein films and were similar to un-oriented commercial polymers. However, there was considerable variation in tensile properties between twenty repetitions of extracting and casting films which was attributed to variations in chain entanglement caused by the drying conditions. Chemical and physical treatments including crosslinking, dehydration and addition of nano-particles were investigated as means to enhance these properties. Significant increases were achieved by soaking films in isopropyl alcohol or weak acid (13 to 50% increases) or by formaldehyde or glutaraldehyde crosslinking (24 to 40% increases). The wide range of values across the pure keratin films indicates that the best route to further strength improvement may be from optimising self-assembly via controlling drying conditions, rather than from chemical treatment.
ISSN:0141-8130
1879-0003
DOI:10.1016/j.ijbiomac.2014.11.003