Interactions of a hybrid insulin/insulin-like growth factor-I analog with chimeric insulin/type I insulin-like growth factor receptors

We have examined, by use of a hybrid insulin/insulin-like growth factor-I analog and chimeric insulin/type I insulin-like growth factor receptors, the interplay between ligand and receptor structure in determining the affinity and specificity of hormone-receptor interactions in the insulin and insul...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 1993-02, Vol.268 (5), p.3044-3047
Hauptverfasser: SCHÄFFER, L, KJELDSEN, T, ANDERSEN, A. S, WIBERG, F. C, LARSEN, U. D, CARA, J. F, MIRMIRA, R. G, NAKAGAWA, S. H, TAGER, H. S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We have examined, by use of a hybrid insulin/insulin-like growth factor-I analog and chimeric insulin/type I insulin-like growth factor receptors, the interplay between ligand and receptor structure in determining the affinity and specificity of hormone-receptor interactions in the insulin and insulin-like growth factor-I systems. Our findings, obtained through the study of radiolabeled peptide binding to detergent-solubilized full-length receptors and to soluble truncated receptors, show that (a) the two-chain hybrid analog exhibits significant cross-reactivity with both receptor systems, (b) the exchange of appropriate domains in chimeric receptors enhances the receptor binding affinity of the analog by 3.5-21-fold, and (c) the affinity of the hybrid analog for the chimeric receptors actually exceeds that of either natural insulin or natural insulin-like growth factor-I. We conclude that the specificity-conferring domains of the insulin and type I insulin-like growth factor receptors reside in different regions of a common binding site, and that the exchange of domains between pairs of related hormones and between pairs of related receptors can yield new ligand-receptor systems with significantly altered affinities and selectivities.
ISSN:0021-9258
1083-351X
DOI:10.1016/S0021-9258(18)53656-5