Detecting the storage and change on topsoil organic carbon in grasslands of Inner Mongolia from 1980s to 2010s

Soil carbon sequestration and potential has been a focal issue in global carbon research. Under the background of global change, the estimation of the size as well as its change of soil organic carbon(SOC) storage is of great importance. Based on soil data from the second national soil survey and fi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of geographical sciences 2014-12, Vol.24 (6), p.1035-1046
Hauptverfasser: Dai, Erfu, Zhai, Ruixue, Ge, Quansheng, Wu, Xiuqin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Soil carbon sequestration and potential has been a focal issue in global carbon research. Under the background of global change, the estimation of the size as well as its change of soil organic carbon(SOC) storage is of great importance. Based on soil data from the second national soil survey and field survey during 2011–2012, by using the regression method between sampling soil data and remote sensing data, this paper aimed to investigate spatial distribution and changes of topsoil(0–20 cm) organic carbon storage in grasslands of Inner Mongolia between the 1980 s and 2010 s. The results showed that:(1) the SOC storage in grasslands of Inner Mongolia between the 1980 s and 2010 s was estimated to be 2.05 and 2.17 Pg C, with an average density of 3.48 and 3.69 kg C·m–2, respectively. The SOC storage was mainly distributed in the typical steppe and meadow steppe, which accounted for over 98% of the total SOC storage. The spatial distribution showed a decreased trend from the meadow steppe, typical steppe to the desert steppe, corresponding to the temperature and precipitation gradient.(2) SOC changes during 1982–2012 were estimated to be 0.12 Pg C, at 7.00 g C·m–2·yr–1, which didn't show a significant change, indicating that SOC storage in grasslands of Inner Mongolia remained relatively stable over this period. However, topsoil organic carbon showed different trends of carbon source/sink during the past three decades. Meadow steppe and typical steppe had sequestered 0.15 and 0.03 Pg C, respectively, served as a carbon sink; while desert steppe lost 0.06 Pg C, served as a carbon source. It appears that SOC storage in grassland ecosystem may respond differently to climate change, related to vegetation type, regional climate type and grazing intensity. These results might give advice to decision makers on adopting suitable countermeasures for sustainable grassland utilization and protection.
ISSN:1009-637X
1861-9568
DOI:10.1007/s11442-014-1136-9