A dynamic MOPSO algorithm for multiobjective optimal design of hybrid renewable energy systems

SUMMARY In this paper, a dynamic multiobjective particle swarm optimization (DMOPSO) method is presented for the optimal design of hybrid renewable energy systems (HRESs). The main goal of the design is to minimize simultaneously the total net present cost (NPC) of the system, unmet load, and fuel e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of energy research 2014-12, Vol.38 (15), p.1949-1963
Hauptverfasser: Sharafi, Masoud, ElMekkawy, Tarek Y.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:SUMMARY In this paper, a dynamic multiobjective particle swarm optimization (DMOPSO) method is presented for the optimal design of hybrid renewable energy systems (HRESs). The main goal of the design is to minimize simultaneously the total net present cost (NPC) of the system, unmet load, and fuel emission. A DMOPSO‐simulation based approach has been used to approximate a worthy Pareto front (PF) to help decision makers in selecting an optimal configuration for an HRES. The proposed method is examined for a case study including wind turbines, photovoltaic (PV) panels, diesel generators, batteries, fuel cells, electrolyzer, and hydrogen tanks. Well‐known metrics are used to evaluate the generated PF. The average spacing and diversification metrics obtained by the proposed approach are 1386 and 4656, respectively. Additionally, the set coverage metric value shows that at least 67% of Pareto solutions obtained by DMOPSO dominate the solutions resulted by other reported algorithms. By using a sensitivity analysis for the case study, it is found that if the PV panel and wind turbine capital cost are decreased by 50%, the total NPC of the system would be decreased by 18.8 and 3.7%, respectively. Copyright © 2014 John Wiley & Sons, Ltd. We propose a novel approach for sizing hybrid renewable energy systems (HRESs).The criteria of the design are minimum cost, loss of load probability, and CO2 emission.We generate a higher performance Pareto front (PF) than well‐known multiobjective particle approaches.We apply an innovative way to exhibit the generated PF for the HRESs.
ISSN:0363-907X
1099-114X
DOI:10.1002/er.3202