Predicting the spatial distribution of mangroves in a South African estuary in response to sea level rise, substrate elevation change and a sea storm event

The spatial distribution of mangroves in the Mngazana Estuary under sea level rise induced by climate change, together with different substrate elevation change scenarios was predicted for 2020, 2050 and 2100. The present inundation frequency tolerance range was from 0.8 to 31.2 %, equivalent to sub...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of coastal conservation 2014-08, Vol.18 (4), p.459-469
Hauptverfasser: Yang, Sheng-Chi, Riddin, T, Adams, J. B, Shih, Shang-Shu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The spatial distribution of mangroves in the Mngazana Estuary under sea level rise induced by climate change, together with different substrate elevation change scenarios was predicted for 2020, 2050 and 2100. The present inundation frequency tolerance range was from 0.8 to 31.2 %, equivalent to substrate elevation thresholds of 1.1 and 1.7 m amsl. These thresholds were measured by field surveys and analysis of a gauge station situated near the mouth of the estuary. The predictions were based on the assumption that the inundation frequency tolerance range of mangrove stands remains constant in the future. Through the use of a digital elevation model an initial increase of 2.10 ha year⁻¹ was found in mangrove area between present and 2020 (from 122.6 to 143.6 ha). This was due to habitat becoming available that is currently too compacted for seedling establishment to occur. This compaction resulted from human and cattle traffic for grazing. Thereafter there would be a mean loss of 0.66 ha year⁻¹ from 2020 through 2100. Landward migration of mangroves would not take place due to the elevation limit of adjacent non-mangrove areas. In addition, the loss rate would increase to 1.01 ha year⁻¹ under insufficient sediment accretion, but would decrease to 0.18 ha year⁻¹ under thriving mangroves condition. The analysis of sea storm event in September 2008 showed that local water level increased by 28 cm and maximum affected area was 87.0 ha (about 71 % of mangrove stands). The inundation continued over 5 days. The results indicated that the combination impact of sea level rise, substrate elevation change and sea storm would possibly be a threat to tropical African estuaries with large flat intertidal areas and mangroves.
ISSN:1400-0350
1874-7841
DOI:10.1007/s11852-014-0331-2