Optimal Taylor–Couette flow: radius ratio dependence
Taylor–Couette flow with independently rotating inner ( $i$ ) and outer ( $o$ ) cylinders is explored numerically and experimentally to determine the effects of the radius ratio $\eta $ on the system response. Numerical simulations reach Reynolds numbers of up to $\mathit{Re}_i=9.5\times 10^3$ and $...
Gespeichert in:
Veröffentlicht in: | Journal of fluid mechanics 2014-05, Vol.747, p.1-29 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Taylor–Couette flow with independently rotating inner (
$i$
) and outer (
$o$
) cylinders is explored numerically and experimentally to determine the effects of the radius ratio
$\eta $
on the system response. Numerical simulations reach Reynolds numbers of up to
$\mathit{Re}_i=9.5\times 10^3$
and
$\mathit{Re}_o=5\times 10^3$
, corresponding to Taylor numbers of up to
$\mathit{Ta}=10^8$
for four different radius ratios
$\eta =r_i/r_o$
between 0.5 and 0.909. The experiments, performed in the Twente Turbulent Taylor–Couette (
$\mathrm{T^3C}$
) set-up, reach Reynolds numbers of up to
$\mathit{Re}_i=2\times 10^6$
and
$\mathit{Re}_o=1.5\times 10^6$
, corresponding to
$\mathit{Ta}=5\times 10^{12}$
for
$\eta =0.714\mbox{--}0.909$
. Effective scaling laws for the torque
$J^{\omega }(\mathit{Ta})$
are found, which for sufficiently large driving
$\mathit{Ta}$
are independent of the radius ratio
$\eta $
. As previously reported for
$\eta =0.714$
, optimum transport at a non-zero Rossby number
$\mathit{Ro}=r_i |\omega _i-\omega _o |/[2(r_o-r_i)\omega _o]$
is found in both experiments and numerics. Here
$\mathit{Ro}_{opt}$
is found to depend on the radius ratio and the driving of the system. At a driving in the range between
$\mathit{Ta}\sim 3\times 10^{8}$
and
$\mathit{Ta}\sim 10^{10}$
,
$\mathit{Ro}_{opt}$
saturates to an asymptotic
$\eta $
-dependent value. Theoretical predictions for the asymptotic value of
$\mathit{Ro}_{opt}$
are compared to the experimental results, and found to differ notably. Furthermore, the local angular velocity profiles from experiments and numerics are compared, and a link between a flat bulk profile and optimum transport for all radius ratios is reported. |
---|---|
ISSN: | 0022-1120 1469-7645 |
DOI: | 10.1017/jfm.2014.134 |