Self-similarity in coupled Brinkman/Navier–Stokes flows

In this paper we derive self-similar solutions of flows through both a porous medium and a pure fluid. Self-similar filtration velocity and hydrodynamic shear profiles are obtained by means of asymptotic analysis in the limit of infinitely small permeability, and for both laminar and turbulent regim...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fluid mechanics 2012-05, Vol.699, p.94-114
1. Verfasser: Battiato, Ilenia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we derive self-similar solutions of flows through both a porous medium and a pure fluid. Self-similar filtration velocity and hydrodynamic shear profiles are obtained by means of asymptotic analysis in the limit of infinitely small permeability, and for both laminar and turbulent regimes over the porous medium. We show that a spatial length scale, related to the porous layer thickness, naturally emerges from the limiting process and suggests a more formal definition of thick and thin porous media. We finally specialize the analysis to porous media constituted of patterned cylindrical obstacles, which can freely deflect under the aerodynamic shear exerted by the fluid flowing through and over the forest. A self-similar solution for the bending profile of the elastic cylindrical obstacles is obtained as intermediate asymptotics, and applied to carbon nanotube (CNT) forests’ response to aerodynamic stresses. This self-similar solution is successfully used to estimate flexural rigidity of CNTs by linear fit of appropriately rescaled maximum deflection and average velocity measurements.
ISSN:0022-1120
1469-7645
DOI:10.1017/jfm.2012.85