A dispersion relation preserving optimized upwind compact difference scheme for high accuracy flow simulations
In this work, we have derived an optimized upwind compact difference scheme for achieving excellent spatial resolution. The derived numerical scheme adds numerical diffusion which is strictly restricted to a high wavenumber region in order to control numerical instabilities, as well as to achieve de...
Gespeichert in:
Veröffentlicht in: | Journal of computational physics 2014-12, Vol.278, p.378-399 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this work, we have derived an optimized upwind compact difference scheme for achieving excellent spatial resolution. The derived numerical scheme adds numerical diffusion which is strictly restricted to a high wavenumber region in order to control numerical instabilities, as well as to achieve de-aliasing ability. More importantly, the derived numerical scheme has excellent dispersion relation preserving (DRP) property. The applicability of the proposed scheme in simulating real flow problems has been demonstrated by solving flow inside a lid driven cavity, a transitional flow past AG24 aerofoil and a two-dimensional decaying turbulence flow. |
---|---|
ISSN: | 0021-9991 1090-2716 |
DOI: | 10.1016/j.jcp.2014.08.040 |