Identifying an unknown source in the Poisson equation by the method of Tikhonov regularization in Hilbert scales
In this paper, we consider the problem for identifying the unknown source in the Poisson equation. The Tikhonov regularization method in Hilbert scales is extended to deal with illposedness of the problem and error estimates are obtained with an a priori strategy and an a posteriori choice rule to f...
Gespeichert in:
Veröffentlicht in: | Applied mathematical modelling 2014-10, Vol.38 (19-20), p.4686-4693 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we consider the problem for identifying the unknown source in the Poisson equation. The Tikhonov regularization method in Hilbert scales is extended to deal with illposedness of the problem and error estimates are obtained with an a priori strategy and an a posteriori choice rule to find the regularization parameter. The user does not need to estimate the smoothness parameter and the a priori bound of the exact solution when the a posteriori choice rule is used. Numerical examples show that the proposed method is effective and stable. |
---|---|
ISSN: | 0307-904X |
DOI: | 10.1016/j.apm.2014.03.021 |