On the structure of biomedical silver-doped phosphate-based glasses from molecular dynamics simulations

First-principles and classical molecular dynamics simulations of undoped and silver-doped phosphate-based glasses with 50 mol% P2O5, 0-20 mol% Ag2O, and varying amounts of Na2O and CaO have been carried out. Ag occupies a distorted local coordination with a mean Ag-O bond length of 2.5 Å and an ill-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2014-10, Vol.16 (39), p.21135-21143
Hauptverfasser: Ainsworth, Richard I, Christie, Jamieson K, de Leeuw, Nora H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:First-principles and classical molecular dynamics simulations of undoped and silver-doped phosphate-based glasses with 50 mol% P2O5, 0-20 mol% Ag2O, and varying amounts of Na2O and CaO have been carried out. Ag occupies a distorted local coordination with a mean Ag-O bond length of 2.5 Å and an ill-defined first coordination shell. This environment is shown to be distorted octahedral/trigonal bipyramidal. Ag-O coordination numbers of 5.42 and 5.54-5.71 are calculated for first-principles and classical methodologies respectively. A disproportionation in the medium-range phosphorus Q(n) distribution is explicitly displayed upon silver-doping via CaO substitution, approximating 2Q(2)→Q(1) + Q(3), but not on silver-doping via Na2O substitution. An accompanying increase in FWHM of the phosphorus to bridging oxygen partial pair-correlation function is strong evidence for a bulk structural mechanism associated with decreased dissolution rates with increased silver content. Experimentally, Ag2O ↔ Na2O substitution is known to decrease dissolution and we show this to be a result of Ag's local bonding.
ISSN:1463-9076
1463-9084
DOI:10.1039/c4cp00574k