A new hybrid model optimized by an intelligent optimization algorithm for wind speed forecasting
•A new hybrid model is developed for wind speed forecasting.•The model is based on the Kalman filter and the ARIMA.•An intelligent optimization method is employed in the hybrid model.•The new hybrid model has good performance in western China. Forecasting the wind speed is indispensable in wind-rela...
Gespeichert in:
Veröffentlicht in: | Energy conversion and management 2014-09, Vol.85, p.443-452 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | •A new hybrid model is developed for wind speed forecasting.•The model is based on the Kalman filter and the ARIMA.•An intelligent optimization method is employed in the hybrid model.•The new hybrid model has good performance in western China.
Forecasting the wind speed is indispensable in wind-related engineering studies and is important in the management of wind farms. As a technique essential for the future of clean energy systems, reducing the forecasting errors related to wind speed has always been an important research subject. In this paper, an optimized hybrid method based on the Autoregressive Integrated Moving Average (ARIMA) and Kalman filter is proposed to forecast the daily mean wind speed in western China. This approach employs Particle Swarm Optimization (PSO) as an intelligent optimization algorithm to optimize the parameters of the ARIMA model, which develops a hybrid model that is best adapted to the data set, increasing the fitting accuracy and avoiding over-fitting. The proposed method is subsequently examined on the wind farms of western China, where the proposed hybrid model is shown to perform effectively and steadily. |
---|---|
ISSN: | 0196-8904 1879-2227 |
DOI: | 10.1016/j.enconman.2014.05.058 |