Three dimensional orientation angle distribution counting and calculation for the mechanical properties of aligned carbon nanotube/epoxy composites

This paper presents effects of carbon nanotube (CNT) orientation angle distribution on elastic moduli of aligned CNT/epoxy composites that were fabricated with various volume fractions using hot-melt prepreg method. Tensile testing was conducted to evaluate the composites’ mechanical properties. The...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Composites. Part A, Applied science and manufacturing Applied science and manufacturing, 2014-10, Vol.65, p.1-9
Hauptverfasser: Tsuda, Terumasa, Ogasawara, Toshio, Moon, Sook-Young, Nakamoto, Kengo, Takeda, Nobuo, Shimamura, Yoshinobu, Inoue, Yoku
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents effects of carbon nanotube (CNT) orientation angle distribution on elastic moduli of aligned CNT/epoxy composites that were fabricated with various volume fractions using hot-melt prepreg method. Tensile testing was conducted to evaluate the composites’ mechanical properties. The composites’ Young’s moduli increased with increasing CNT volume fraction. Scanning electron microscopy (SEM) revealed CNT orientation angle distribution data for the surface and through-thickness planes. The standard deviation of CNT orientation angle distribution was about 30° for the surface, and 22.5° for the through-thickness plane. The effective Young’s modulus of CNT was estimated using the equivalent inclusion theory (Eshelby/Mori–Tanaka theory) incorporating a three-dimensional CNT orientation distribution function. The CNT Young’s modulus was approximately 800GPa, which agrees with reported theoretical and experimental values.
ISSN:1359-835X
1878-5840
DOI:10.1016/j.compositesa.2014.05.009