Highly scalable ZIF-based mixed-matrix hollow fiber membranes for advanced hydrocarbon separations

ZIF‐8/6FDA‐DAM, a proven mixed‐matrix material that demonstrated remarkably enhanced C3H6/C3H8 selectivity in dense film geometry, was extended to scalable hollow fiber geometry in the current work. We successfully formed dual‐layer ZIF‐8/6FDA‐DAM mixed‐matrix hollow fiber membranes with ZIF‐8 nanop...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIChE journal 2014-07, Vol.60 (7), p.2625-2635
Hauptverfasser: Zhang, Chen, Zhang, Kuang, Xu, Liren, Labreche, Ying, Kraftschik, Brian, Koros, William J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:ZIF‐8/6FDA‐DAM, a proven mixed‐matrix material that demonstrated remarkably enhanced C3H6/C3H8 selectivity in dense film geometry, was extended to scalable hollow fiber geometry in the current work. We successfully formed dual‐layer ZIF‐8/6FDA‐DAM mixed‐matrix hollow fiber membranes with ZIF‐8 nanoparticle loading up to 30 wt % using the conventional dry‐jet/wet‐quench fiber spinning technique. The mixed‐matrix hollow fibers showed significantly enhanced C3H6/C3H8 selectivity that was consistent with mixed‐matrix dense films. Critical variables controlling successful formation of mixed‐matrix hollow fiber membranes with desirable morphology and attractive transport properties were discussed. Furthermore, the effects of coating materials on selectivity recovery of partially defective fibers were investigated. To our best knowledge, this is the first article reporting successful formation of high‐loading mixed‐matrix hollow fiber membranes with significantly enhanced selectivity for separation of condensable olefin/paraffin mixtures. Therefore, it represents a major step in the research area of advanced mixed‐matrix membranes. © 2014 American Institute of Chemical Engineers AIChE J, 60: 2625–2635, 2014
ISSN:0001-1541
1547-5905
DOI:10.1002/aic.14496