Quad-polarization SAR features of ocean currents

A methodology is demonstrated to exploit the polarization sensitivity of high‐resolution radar measurements to interpret and quantify upper ocean dynamics. This study particularly illustrates the potential of quad‐polarization synthetic aperture radar (SAR) measurements. The analysis relies on essen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal Of Geophysical Research-oceans 2014-09, Vol.119 (9), p.6046-6065
Hauptverfasser: Kudryavtsev, V., Kozlov, I., Chapron, B., Johannessen, J. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A methodology is demonstrated to exploit the polarization sensitivity of high‐resolution radar measurements to interpret and quantify upper ocean dynamics. This study particularly illustrates the potential of quad‐polarization synthetic aperture radar (SAR) measurements. The analysis relies on essential characteristics of the electromagnetic scattering mechanisms and hydrodynamical principles. As the relaxation scale of centimeter‐scale ocean surface scatters is typically small, radar signal anomalies associated with surface manifestations of the upper ocean dynamics on spatial scales exceeding 100 m are mostly dominated by nonresonant and nonpolarized scatters. These “scalar” contributions can thus efficiently trace local breaking and near‐breaking areas, caused by surface current variations. Using dual copolarized measurements, the polarized Bragg‐type radar scattering is isolated by considering the difference (PD) between vertically and horizontally polarized radar signals. The nonpolarized (NP) contribution associated with wave breaking is then deduced, using the measured polarization ratio (PR) between polarized signals. Considering SAR scenes depicting various surface manifestations of the upper ocean dynamics (internal waves, mesoscale surface current features, and SST front), the proposed methodology and set of decompositions (PD, PR, and NP) efficiently enable the discrimination between surface manifestation of upper ocean dynamics and wind field variability. Applied to quad‐polarized SAR images, such decompositions further provide unique opportunities to more directly assess the cross‐polarized (CP for HV or VH) signal sensitivity to surface roughness changes. As demonstrated, such an analysis unambiguously demonstrates and quantitatively evaluates the relative impact of breakers on cross‐polarized signals under low to moderate wind conditions. Key Points A methodology to exploit polarization sensitivity to interpret SAR images Current signatures are mostly dominated by nonpolarized breaking scatters Analysis clearly demonstrates impact of breakers on cross‐polarized signals
ISSN:2169-9275
0148-0027
2169-9291
DOI:10.1002/2014JC010173