Seismic performance and probabilistic collapse resistance assessment of steel moment resisting frames with fluid viscous dampers
SUMMARY This paper evaluates the seismic resistance of steel moment resisting frames (MRFs) with supplemental fluid viscous dampers against collapse. A simplified design procedure is used to design four different steel MRFs with fluid viscous dampers where the strength of the steel MRF and supplemen...
Gespeichert in:
Veröffentlicht in: | Earthquake engineering & structural dynamics 2014-11, Vol.43 (14), p.2135-2154 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | SUMMARY
This paper evaluates the seismic resistance of steel moment resisting frames (MRFs) with supplemental fluid viscous dampers against collapse. A simplified design procedure is used to design four different steel MRFs with fluid viscous dampers where the strength of the steel MRF and supplemental damping are varied. The combined systems are designed to achieve performance that is similar to or higher than that of conventional steel MRFs designed according to current seismic design codes. Based on the results of nonlinear time history analyses and incremental dynamic analyses, statistics of structural and non‐structural response as well as probabilities of collapse of the steel MRFs with dampers are determined and compared with those of conventional steel MRFs. The analytical frame models used in this study are reliably capable to simulate global frame collapse by considering full geometric nonlinearities as well as the cyclic strength and stiffness deterioration in the plastic hinge regions of structural steel members. The results show that, with the aid of supplemental damping, the performance of a steel MRF with reduced design base shear can be improved and become similar to that of a conventional steel MRF with full design base shear. Incremental dynamic analyses show that supplemental damping reduces the probability of collapse of a steel MRF with a given strength. However, the paper highlights that a design base shear equal to 75% of the minimum design base shear along with supplemental damping to control story drift at 2% (i.e., design drift of a conventional steel MRF) would not guarantee a higher collapse resistance than that of a conventional MRF. At 75% design base shear, a tighter design drift (e.g., 1.5% as shown in this study) is needed to guarantee a higher collapse resistance than that of a conventional MRF. Copyright © 2014 John Wiley & Sons, Ltd. |
---|---|
ISSN: | 0098-8847 1096-9845 |
DOI: | 10.1002/eqe.2440 |