Laws of flow with a limiting gradient in anisotropic porous media

The equations of viscoplastic fluid flow through a porous medium are written for all types of anisotropy. It is shown that in anisotropic media the flows with a limiting gradient are characterized by two material tensors: the tensor of permeability (flow resistance) coefficients and the tensor of li...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fluid dynamics 2010-04, Vol.45 (2), p.223-229
Hauptverfasser: Dmitriev, N. M., Maksimov, V. M., Mamedov, M. T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The equations of viscoplastic fluid flow through a porous medium are written for all types of anisotropy. It is shown that in anisotropic media the flows with a limiting gradient are characterized by two material tensors: the tensor of permeability (flow resistance) coefficients and the tensor of limiting gradients. A complex of laboratory measurements for determining the tensors of permeability coefficients and limiting gradients is considered for all types of anisotropic media. It is shown that the tensors of permeability coefficients and limiting gradients are coaxial. Conditions of flow onset and fluid flow laws are formulated for media with monoclinic and triclinic symmetries of flow characteristics.
ISSN:0015-4628
1573-8507
DOI:10.1134/S0015462810020079