Hawaiian lava flows in the third dimension: Identification and interpretation of pahoehoe and 'a'a distribution in the KP-1 and SOH-4 cores

Hawaiian lava flows are classified as pahoehoe or 'a'a by their surface morphology. As surface morphology reflects flow emplacement conditions, the surface distribution of morphologic flow types has been used to study the evolution and eruptive history of basaltic volcanoes. We extend this...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geochemistry, geophysics, geosystems : G3 geophysics, geosystems : G3, 2003-02, Vol.4 (2), p.np-np
Hauptverfasser: Katz, Melissa G, Cashman, Katharine V
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Hawaiian lava flows are classified as pahoehoe or 'a'a by their surface morphology. As surface morphology reflects flow emplacement conditions, the surface distribution of morphologic flow types has been used to study the evolution and eruptive history of basaltic volcanoes. We extend this analysis to the third dimension by determining the distribution of flow types in two deep drill cores, the Scientific Observation Hole-4 (SOH-4) core, drilled near Kilauea's East Rift Zone (ERZ), and the pilot hole (Kahi Puka-1 (KP-1)) for the Hawaiian Scientific Drilling Project (HSDP), drilled through distal flows from Mauna Loa and Mauna Kea. Flows are classified using both internal structures and groundmass textures, with the latter useful when identification based on mesoscopic flow features (e.g., surface morphology and vesicle content and distribution) is ambiguous. We then examine the temporal distribution of pahoehoe and 'a'a flows in proximal (SOH-4) and distal (KP-1) settings. Sequence analysis shows that the two flow types are not randomly distributed in either core but instead are strongly clustered. The proximal SOH-4 core is dominated by thin pahoehoe flows (60% by volume), consistent with the common occurrence of surface-fed pahoehoe flows in near-vent settings. The distal KP-1 core has a high proportion of 'a'a (58% by volume), although the proportion of pahoehoe and 'a'a varies dramatically throughout the Mauna Kea sequence. Thick inflated pahoehoe flows dominate when the drill site was near sea level, consistent with the numerous inflated pahoehoe fields on the current coastal plains of Kilauea and Mauna Loa. 'A'a flows are abundant when the site was far above sea level. As slope increases from the coastal plains to Mauna Kea's flank, this correlation may reflect the combined effect of long transport distances and increased slopes on flow emplacement. These results demonstrate that flow type and thickness variations in cores provide valuable information about both vent location and local site environment. Observed variations in flow type within the KP-1 core raise interesting questions about feedback between volcano evolution and flow morphology and suggest that flow type is an important variable in models of volcano growth and related models for lava flow hazard assessment.
ISSN:1525-2027
1525-2027
DOI:10.1029/2001GC000209