Diffusion mechanisms in lithium disilicate melt by molecular dynamics simulation
In this work we study the diffusion mechanisms in lithium disilicate melt using molecular dynamics simulation, which has an edge over other simulation methods because it can track down actual atomic rearrangements in materials once a realistic interaction potential is applied. Our simulation results...
Gespeichert in:
Veröffentlicht in: | Journal of non-crystalline solids 2014-10, Vol.402, p.91-95 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this work we study the diffusion mechanisms in lithium disilicate melt using molecular dynamics simulation, which has an edge over other simulation methods because it can track down actual atomic rearrangements in materials once a realistic interaction potential is applied. Our simulation results of diffusion coefficients show an excellent agreement with experiments. Using the diffusion coefficient of silicon, we are able to demonstrate that this glass-forming liquid obeys the well-known Stokes–Einstein relation at least down to 1600K. The relaxation obtained via the self-part of the intermediate scattering function decouples from viscosity measurements at temperatures below 2000K. Additionally, an analysis on the dynamical behavior of slow-diffusing atoms reveals explicitly the presence of dynamical heterogeneities.
•Dynamical properties from simulations show excellent agreement with experiments.•Diffusion is more suitable than relaxation time to describe viscous flow.•Displacement distribution reveals dynamical heterogeneities near the melting point. |
---|---|
ISSN: | 0022-3093 1873-4812 |
DOI: | 10.1016/j.jnoncrysol.2014.05.018 |