Effects of reactive and nonreactive POSS types on the mechanical, thermal, and morphological properties of plasticized poly(lactic acid)

The aim of this study is to investigate the effects of the reactive and nonreactive polyhedral oligomeric silsesquioxane (POSSs) types and their composition on the mechanical, thermal, and morphological properties of poly(ethylene glycol) plasticized poly(lactic acid) (PLA) composites prepared with...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymer engineering and science 2014-02, Vol.54 (2), p.264-275
Hauptverfasser: Kodal, Mehmet, Sirin, Humeyra, Ozkoc, Guralp
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The aim of this study is to investigate the effects of the reactive and nonreactive polyhedral oligomeric silsesquioxane (POSSs) types and their composition on the mechanical, thermal, and morphological properties of poly(ethylene glycol) plasticized poly(lactic acid) (PLA) composites prepared with melt compounding. The results showed that the incorporation of POSS decreased the melt viscosity of the compounds regardless of POSS type. The lowest viscosity was obtained with epoxy‐POSS, which is the only one that is liquid at processing temperature in comparison to the others. It was revealed from the mechanical tests that the toughness‐related properties such as impact strength and elongation at break improved by the addition of POSS without remarkable deterioration in stiffness. The chemical structure of the POSS influenced the level of dispersion and hence the mechanical performance of the composites. Octaisobutyl‐POSS, being the nonreactive and nonpolar one, had the best dispersion among the other reactive and polar POSS types. The glass transition temperature of the matrix decreased in the presence of POSS types. In addition, the POSS particles also had an impact on the crystallization of PLA. The thermal stability of the composites improved in the presence of POSS particles with respect to the POSS content and the POSS type. POLYM. ENG. SCI., 54:264–275, 2014. © 2013 Society of Plastics Engineers
ISSN:0032-3888
1548-2634
DOI:10.1002/pen.23557