Vulnerability of population and transportation infrastructure at the east bank of Delaware Bay due to coastal flooding in sea-level rise conditions

Catastrophic flooding associated with sea-level rise and change of hurricane patterns has put the northeastern coastal regions of the United States at a greater risk. In this paper, we predict coastal flooding at the east bank of Delaware Bay and analyze the resulting impact on residents and transpo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Natural hazards (Dordrecht) 2013-10, Vol.69 (1), p.141-163
Hauptverfasser: Tang, Han Song, Chien, Steven I-Jy, Temimi, Marouane, Blain, Cheryl Ann, Ke, Qu, Zhao, Liuhui, Kraatz, Simon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Catastrophic flooding associated with sea-level rise and change of hurricane patterns has put the northeastern coastal regions of the United States at a greater risk. In this paper, we predict coastal flooding at the east bank of Delaware Bay and analyze the resulting impact on residents and transportation infrastructure. The three-dimensional coastal ocean model FVCOM coupled with a two-dimensional shallow water model is used to simulate hydrodynamic flooding from coastal ocean water with fine-resolution meshes, and a topography-based hydrologic method is applied to estimate inland flooding due to precipitation. The entire flooded areas with a range of storm intensity (i.e., no storm, 10-, and 50-year storm) and sea-level rise (i.e., current, 10-, and 50-year sea level) are thus determined. The populations in the study region in 10 and 50 years are predicted using an economic-demographic model. With the aid of ArcGIS, detailed analysis of affected population and transportation systems including highway networks, railroads, and bridges is presented for all of the flood scenarios. It is concluded that sea-level rise will lead to a substantial increase in vulnerability of residents and transportation infrastructure to storm floods, and such a flood tends to affect more population in Cape May County but more transportation facilities in Cumberland County, New Jersey.
ISSN:0921-030X
1573-0840
DOI:10.1007/s11069-013-0691-1