Evaluation of Medium-Range Forecasts for Hurricane Sandy

On 30 October 2012 Hurricane Sandy made landfall on the U.S. East Coast with a devastating impact. Here the performance of the ECMWF forecasts (both high resolution and ensemble) are evaluated together with ensemble forecasts from other numerical weather prediction centers, available from The Observ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Monthly weather review 2014-05, Vol.142 (5), p.1962-1981
Hauptverfasser: Magnusson, Linus, Bidlot, Jean-Raymond, Lang, Simon T, Thorpe, Alan, Wedi, Nils, Yamaguchi, Munehiko
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:On 30 October 2012 Hurricane Sandy made landfall on the U.S. East Coast with a devastating impact. Here the performance of the ECMWF forecasts (both high resolution and ensemble) are evaluated together with ensemble forecasts from other numerical weather prediction centers, available from The Observing System Research and Predictability Experiment (THORPEX) Interactive Grand Global Ensemble (TIGGE) archive. The sensitivity to sea surface temperature (SST) and model resolution for the ECMWF forecasts are explored. The results show that the ECMWF forecasts provided a clear indication of the landfall from 7 days in advance. Comparing ensemble forecasts from different centers, the authors find the ensemble forecasts from ECMWF to be the most consistent in the forecast of the landfall of Sandy on the New Jersey coastline. The impact of the warm SST anomaly off the U.S. East Coast is investigated by running sensitivity experiments with climatological SST instead of persisting the SST anomaly from the analysis. The results show that the SST anomaly had a small effect on Sandys track in the forecast, but the forecasts initialized with the warm SST anomaly feature a more intense system in terms of the depth of the cyclone, wind speeds, and precipitation. Furthermore, the role of spatial resolution is investigated by comparing four global simulations, spanning from TL159 (150 km) to TL3999 (5 km) horizontal resolution. Forecasts from 3 and 5 days before the landfall are evaluated. While all resolutions predict Sandys landfall, at very high resolution the tropical cyclone intensity and the oceanic wave forecasts are greatly improved.
ISSN:0027-0644
1520-0493
DOI:10.1175/MWR-D-13-00228.1