Human activity recognition using overlapping multi-feature descriptor
An efficient overlapping multi-feature descriptor and classification scheme for human activity recognition is introduced. The descriptor is constructed by overlapping global feature combinations of multiframes using a Hankel matrix representation. The descriptor captures the local and temporal infor...
Gespeichert in:
Veröffentlicht in: | Electronics letters 2011-11, Vol.47 (23), p.1-1 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | 23 |
container_start_page | 1 |
container_title | Electronics letters |
container_volume | 47 |
creator | Cho, S Y Byun, H R |
description | An efficient overlapping multi-feature descriptor and classification scheme for human activity recognition is introduced. The descriptor is constructed by overlapping global feature combinations of multiframes using a Hankel matrix representation. The descriptor captures the local and temporal information while overcoming the limitations of global features using an overlapping combination scheme. In addition, a random forests classifier is used to cope with noise in the descriptor that can be obtained from no-activity frames in a video. Using this framework, it is shown that the approach outperforms the state-of-the-art methods using the KTH dataset and a much more complex human interaction dataset. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_1642267823</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1642267823</sourcerecordid><originalsourceid>FETCH-LOGICAL-p613-c27b3ebb494b221741cea499ab28ad3bc7e67631a836a2990d554bfa0112fd2d3</originalsourceid><addsrcrecordid>eNpdjk1LAzEYhIMoWKv_YcGLl4XkzdfmKKVaoeClB28lyWZLym6y5qPgv3dFT55mBh5m5gqtCOW4VYR8XKMVxoS2nCh2i-5yPi8RlJIrtN3VSYdG2-Ivvnw1ydl4Cr74GJqafTg18eLSqOf5x091LL4dnC41uaZ32SY_l5ju0c2gx-we_nSNDi_bw2bX7t9f3zbP-3YWy7wFaagzhilmAIhkxDrNlNIGOt1TY6UTUlCiOyr0cg_3nDMzaEwIDD30dI2efmvnFD-ry-U4-WzdOOrgYs1HIhiAkB3QBX38h55jTWE5t1CAgRLMOf0GtiNWtQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1620231055</pqid></control><display><type>article</type><title>Human activity recognition using overlapping multi-feature descriptor</title><source>Alma/SFX Local Collection</source><creator>Cho, S Y ; Byun, H R</creator><creatorcontrib>Cho, S Y ; Byun, H R</creatorcontrib><description>An efficient overlapping multi-feature descriptor and classification scheme for human activity recognition is introduced. The descriptor is constructed by overlapping global feature combinations of multiframes using a Hankel matrix representation. The descriptor captures the local and temporal information while overcoming the limitations of global features using an overlapping combination scheme. In addition, a random forests classifier is used to cope with noise in the descriptor that can be obtained from no-activity frames in a video. Using this framework, it is shown that the approach outperforms the state-of-the-art methods using the KTH dataset and a much more complex human interaction dataset.</description><identifier>ISSN: 0013-5194</identifier><identifier>EISSN: 1350-911X</identifier><identifier>CODEN: ELLEAK</identifier><language>eng</language><publisher>Stevenage: John Wiley & Sons, Inc</publisher><subject>Classification ; Forests ; Frames ; Human motion ; Matrix representation ; Recognition ; State of the art ; Temporal logic</subject><ispartof>Electronics letters, 2011-11, Vol.47 (23), p.1-1</ispartof><rights>Copyright The Institution of Engineering & Technology Nov 10, 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784</link.rule.ids></links><search><creatorcontrib>Cho, S Y</creatorcontrib><creatorcontrib>Byun, H R</creatorcontrib><title>Human activity recognition using overlapping multi-feature descriptor</title><title>Electronics letters</title><description>An efficient overlapping multi-feature descriptor and classification scheme for human activity recognition is introduced. The descriptor is constructed by overlapping global feature combinations of multiframes using a Hankel matrix representation. The descriptor captures the local and temporal information while overcoming the limitations of global features using an overlapping combination scheme. In addition, a random forests classifier is used to cope with noise in the descriptor that can be obtained from no-activity frames in a video. Using this framework, it is shown that the approach outperforms the state-of-the-art methods using the KTH dataset and a much more complex human interaction dataset.</description><subject>Classification</subject><subject>Forests</subject><subject>Frames</subject><subject>Human motion</subject><subject>Matrix representation</subject><subject>Recognition</subject><subject>State of the art</subject><subject>Temporal logic</subject><issn>0013-5194</issn><issn>1350-911X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpdjk1LAzEYhIMoWKv_YcGLl4XkzdfmKKVaoeClB28lyWZLym6y5qPgv3dFT55mBh5m5gqtCOW4VYR8XKMVxoS2nCh2i-5yPi8RlJIrtN3VSYdG2-Ivvnw1ydl4Cr74GJqafTg18eLSqOf5x091LL4dnC41uaZ32SY_l5ju0c2gx-we_nSNDi_bw2bX7t9f3zbP-3YWy7wFaagzhilmAIhkxDrNlNIGOt1TY6UTUlCiOyr0cg_3nDMzaEwIDD30dI2efmvnFD-ry-U4-WzdOOrgYs1HIhiAkB3QBX38h55jTWE5t1CAgRLMOf0GtiNWtQ</recordid><startdate>20111110</startdate><enddate>20111110</enddate><creator>Cho, S Y</creator><creator>Byun, H R</creator><general>John Wiley & Sons, Inc</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7SP</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>20111110</creationdate><title>Human activity recognition using overlapping multi-feature descriptor</title><author>Cho, S Y ; Byun, H R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p613-c27b3ebb494b221741cea499ab28ad3bc7e67631a836a2990d554bfa0112fd2d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Classification</topic><topic>Forests</topic><topic>Frames</topic><topic>Human motion</topic><topic>Matrix representation</topic><topic>Recognition</topic><topic>State of the art</topic><topic>Temporal logic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cho, S Y</creatorcontrib><creatorcontrib>Byun, H R</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Electronics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cho, S Y</au><au>Byun, H R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Human activity recognition using overlapping multi-feature descriptor</atitle><jtitle>Electronics letters</jtitle><date>2011-11-10</date><risdate>2011</risdate><volume>47</volume><issue>23</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>0013-5194</issn><eissn>1350-911X</eissn><coden>ELLEAK</coden><abstract>An efficient overlapping multi-feature descriptor and classification scheme for human activity recognition is introduced. The descriptor is constructed by overlapping global feature combinations of multiframes using a Hankel matrix representation. The descriptor captures the local and temporal information while overcoming the limitations of global features using an overlapping combination scheme. In addition, a random forests classifier is used to cope with noise in the descriptor that can be obtained from no-activity frames in a video. Using this framework, it is shown that the approach outperforms the state-of-the-art methods using the KTH dataset and a much more complex human interaction dataset.</abstract><cop>Stevenage</cop><pub>John Wiley & Sons, Inc</pub><tpages>1</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-5194 |
ispartof | Electronics letters, 2011-11, Vol.47 (23), p.1-1 |
issn | 0013-5194 1350-911X |
language | eng |
recordid | cdi_proquest_miscellaneous_1642267823 |
source | Alma/SFX Local Collection |
subjects | Classification Forests Frames Human motion Matrix representation Recognition State of the art Temporal logic |
title | Human activity recognition using overlapping multi-feature descriptor |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T05%3A05%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Human%20activity%20recognition%20using%20overlapping%20multi-feature%20descriptor&rft.jtitle=Electronics%20letters&rft.au=Cho,%20S%20Y&rft.date=2011-11-10&rft.volume=47&rft.issue=23&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=0013-5194&rft.eissn=1350-911X&rft.coden=ELLEAK&rft_id=info:doi/&rft_dat=%3Cproquest%3E1642267823%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1620231055&rft_id=info:pmid/&rfr_iscdi=true |