Human activity recognition using overlapping multi-feature descriptor

An efficient overlapping multi-feature descriptor and classification scheme for human activity recognition is introduced. The descriptor is constructed by overlapping global feature combinations of multiframes using a Hankel matrix representation. The descriptor captures the local and temporal infor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronics letters 2011-11, Vol.47 (23), p.1-1
Hauptverfasser: Cho, S Y, Byun, H R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An efficient overlapping multi-feature descriptor and classification scheme for human activity recognition is introduced. The descriptor is constructed by overlapping global feature combinations of multiframes using a Hankel matrix representation. The descriptor captures the local and temporal information while overcoming the limitations of global features using an overlapping combination scheme. In addition, a random forests classifier is used to cope with noise in the descriptor that can be obtained from no-activity frames in a video. Using this framework, it is shown that the approach outperforms the state-of-the-art methods using the KTH dataset and a much more complex human interaction dataset.
ISSN:0013-5194
1350-911X