Assessing the Impacts of Climate Change on Hydrology of the Upper Reach of the Spree River: Germany

The aim of this study was to assess the potential impacts of future climate change on the hydrological response in the upper reach of the Spree River catchment using the Soil and Water Assessment Tool (SWAT). The model was calibrated for ten years (1997–2006) and validated with the data from four ye...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water resources management 2014-08, Vol.28 (10), p.2731-2749
Hauptverfasser: Al-Mukhtar, Mustafa, Dunger, Volkmar, Merkel, Broder
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The aim of this study was to assess the potential impacts of future climate change on the hydrological response in the upper reach of the Spree River catchment using the Soil and Water Assessment Tool (SWAT). The model was calibrated for ten years (1997–2006) and validated with the data from four years (2007–2010) using average monthly stream flow. The impact of future climate change on precipitation, temperature, evapotranspiration and stream flow was then investigated from two different downscaled climate models (CLM and WETTREG2010) under SRES A1B scenarios for two future periods (2021–2030 and 2041–2050). Besides that, sensitivity analysis was carried out with and without observations, to test robustness of the sensitivity algorithm used in the model. Results of the determination coefficient R² and Nasch-Sutcliff efficiency ENC were 0.81 and 0.80, respectively, during the calibration; 0.71 and 0.70, respectively, during the validation. Although some parameters were changed their sensitiveness ranking when the model run with observations, the SWAT model was, however, able to predict the top influential parameters without observations. According to 12 realizations from the two downscaled climate models, annual stream flow from 2021–2030 (2041–2050) is predicted to decrease by 39 % (43 %). This corresponds to an increase in annual evapotranspiration from 2021–2030 (2041–2050) of 36 % (38 %). The upper reach of the Spree River catchment will likely experience a significant decrease in stream flow due to the increasing in the evapotranspiration rates. This study could be of use for providing insight into the availability of future stream flow, and to provide a planning tool for this area.
ISSN:0920-4741
1573-1650
DOI:10.1007/s11269-014-0675-2