Maximizing the peak capacity using coupled columns packed with 2.6 Amm core-shell particles operated at 1200 bar
We report on the peak capacity that can be produced by operating a state-of-the-art core-shell particle type (dp = 2.6 Amm) at its kinetic optimum at ultra-high pressures of 600 and 1200 bar. The column-length optimization needed to arrive at this kinetic optimum was realized using column coupling....
Gespeichert in:
Veröffentlicht in: | Journal of Chromatography A 2012-09, Vol.1256, p.72-79 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We report on the peak capacity that can be produced by operating a state-of-the-art core-shell particle type (dp = 2.6 Amm) at its kinetic optimum at ultra-high pressures of 600 and 1200 bar. The column-length optimization needed to arrive at this kinetic optimum was realized using column coupling. Whereas the traditional operating mode (using a single 15 cm column operated at its optimum flow rate of 0.4 mL/min) offered a peak capacity of 162 in 10.8 min, a fully optimized train of 60 cm (4 X 15 cm) columns offered a peak capacity of 325 in 61 min when operated at 1200 bar. Even though the particles have a reputed low flow resistance and a relatively large size (>2 Amm), it was found that the increase in performance that can be generated when switching from a fully optimized 600 bar operation to a fully optimized 1200 bar operation is significant (roughly 50% reduction of the analysis time for the same peak capacity and approximately a 20% increase in peak capacity if compared for the same analysis time). This has been quantified in a generic way using the kinetic plot method and is illustrated by showing the chromatograms corresponding to some of the data points of the kinetic plot curve. |
---|---|
ISSN: | 0021-9673 |
DOI: | 10.1016/j.chroma.2012.07.031 |