Tailored synthesis of hierarchical spinous hollow titania hexagonal prisms via a self-template route
Novel hierarchical spinous hollow titania hexagonal prisms are prepared through a facile fluorine-free self-template route using Ti2O3(H2O)2(C2O4)·H2O (TC) hexagonal prisms as a precursor. The hollowing transformation can be elucidated by the template-free Kirkendall effect, and diverse nanostructur...
Gespeichert in:
Veröffentlicht in: | Nanoscale 2014-11, Vol.6 (22), p.13915-13920 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Novel hierarchical spinous hollow titania hexagonal prisms are prepared through a facile fluorine-free self-template route using Ti2O3(H2O)2(C2O4)·H2O (TC) hexagonal prisms as a precursor. The hollowing transformation can be elucidated by the template-free Kirkendall effect, and diverse nanostructures can also be synthesized during the conversion process, such as the spinous core-shell and yolk-shell nanocomposites. The hierarchical hollow microparticles are composed of ultrathin nanobelts of 50-100 nm in length and about 10 nm in thickness, and possess a higher surface area of up to 163 m(2) g(-1) compared with solid microparticles (49 m(2) g(-1)). This type of morphology is of great interest for lithium-ion batteries because of its shorter length for Li(+) transport and better electrode-electrolyte contact. |
---|---|
ISSN: | 2040-3364 2040-3372 |
DOI: | 10.1039/c4nr03746d |