NanoCap: A framework for generating capped carbon nanotubes and fullerenes
NanoCap provides both libraries and a standalone application for the construction of capped nanotubes of arbitrary chirality and fullerenes of any radius. Structures are generated by constructing a set of optimal dual graph topologies which are subsequently optimised using a carbon interatomic poten...
Gespeichert in:
Veröffentlicht in: | Computer physics communications 2014-10, Vol.185 (10), p.2519-2526 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | NanoCap provides both libraries and a standalone application for the construction of capped nanotubes of arbitrary chirality and fullerenes of any radius. Structures are generated by constructing a set of optimal dual graph topologies which are subsequently optimised using a carbon interatomic potential. Combining this approach with a GUI featuring 3D rendering capabilities allows for the rapid inspection of physically sensible structures which can be used as input for molecular simulation.
Manuscript Title: NanoCap - A Generator for Capped Carbon Nanotubes and Fullerenes
Authors: Marc Robinson
Program Title: NanoCap
Journal Reference:
Catalogue identifier:
Licensing provisions: Creative Commons Attribution-NonCommercial 2.5 (CC BY-NC 2.5)
Programming language: Python, C
Computer: Any system with Python (with NumPy and SciPy) and a C compiler.
Operating system: Linux, OS-X, Windows
RAM: up to 4 GB
Keywords: Molecular Modelling, Atomistic Simulation, Fullerene, Nanotube
Classification: 16.1 Molecular Physics and Physical Chemistry—Structure and Properties
External routines/libraries: NumPy [1], SciPy [2], EDIP [3], (GUI version: Qt+PySide [4], VTK [5])
Nature of problem:
The ability to readily produce arbitrary sized, low-energy fullerene and capped nanotube structures for molecular simulation.
Solution method:
Structures are generated using the dual lattice representation, which are subsequently optimised using physical carbon interatomic potentials.
Running time:
Scales dependent on the number of carbon atoms in the structure. For the C196 molecule 10 structures can be found in around 30 s on a single CPU.
References:
[1] T. E. Oliphant. Comp. Sci. Eng. 9(3) (2007) 10–20. http://www.numpy.org
[2] E. Jones, T. E. Oliphant, P. Peterson et al. SciPy: Open Source Scientific Tools for Python. http://www.scipy.org
[3] N. A. Marks. Phys. Rev. B 63(3) (2000) 035401
[4] Digia. Qt - Cross-platform application and UI framework. http://www.qt-project.org/
[5] W. Schroeder. K. Martin, B. Lorensen. The Visualisation Toolkit (1993–2008) http://www.vtk.org/ |
---|---|
ISSN: | 0010-4655 1879-2944 |
DOI: | 10.1016/j.cpc.2014.05.029 |