NanoCap: A framework for generating capped carbon nanotubes and fullerenes

NanoCap provides both libraries and a standalone application for the construction of capped nanotubes of arbitrary chirality and fullerenes of any radius. Structures are generated by constructing a set of optimal dual graph topologies which are subsequently optimised using a carbon interatomic poten...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer physics communications 2014-10, Vol.185 (10), p.2519-2526
Hauptverfasser: Robinson, M., Marks, N.A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:NanoCap provides both libraries and a standalone application for the construction of capped nanotubes of arbitrary chirality and fullerenes of any radius. Structures are generated by constructing a set of optimal dual graph topologies which are subsequently optimised using a carbon interatomic potential. Combining this approach with a GUI featuring 3D rendering capabilities allows for the rapid inspection of physically sensible structures which can be used as input for molecular simulation. Manuscript Title: NanoCap - A Generator for Capped Carbon Nanotubes and Fullerenes Authors: Marc Robinson Program Title: NanoCap Journal Reference: Catalogue identifier: Licensing provisions: Creative Commons Attribution-NonCommercial 2.5 (CC BY-NC 2.5) Programming language: Python, C Computer: Any system with Python (with NumPy and SciPy) and a C compiler. Operating system: Linux, OS-X, Windows RAM: up to 4 GB Keywords: Molecular Modelling, Atomistic Simulation, Fullerene, Nanotube Classification: 16.1 Molecular Physics and Physical Chemistry—Structure and Properties External routines/libraries: NumPy [1], SciPy [2], EDIP [3], (GUI version: Qt+PySide [4], VTK [5]) Nature of problem: The ability to readily produce arbitrary sized, low-energy fullerene and capped nanotube structures for molecular simulation. Solution method: Structures are generated using the dual lattice representation, which are subsequently optimised using physical carbon interatomic potentials. Running time: Scales dependent on the number of carbon atoms in the structure. For the C196 molecule 10 structures can be found in around 30 s on a single CPU. References: [1] T. E. Oliphant. Comp. Sci. Eng. 9(3) (2007) 10–20. http://www.numpy.org [2] E. Jones, T. E. Oliphant, P. Peterson et al. SciPy: Open Source Scientific Tools for Python. http://www.scipy.org [3] N. A. Marks. Phys. Rev. B 63(3) (2000) 035401 [4] Digia. Qt - Cross-platform application and UI framework. http://www.qt-project.org/ [5] W. Schroeder. K. Martin, B. Lorensen. The Visualisation Toolkit (1993–2008) http://www.vtk.org/
ISSN:0010-4655
1879-2944
DOI:10.1016/j.cpc.2014.05.029