Proposal for preprogrammed control applied to a current-sensorless PFC boost converter
The development of front-end converters for power factor correction and DC link voltage control of power electronics converters such as, UPS, Inverters, and Switched Power Supplies, has been attracting great interest from the scientific community that works toward the achievements of cost reduction,...
Gespeichert in:
Veröffentlicht in: | Microprocessors and microsystems 2014-07, Vol.38 (5), p.443-450 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The development of front-end converters for power factor correction and DC link voltage control of power electronics converters such as, UPS, Inverters, and Switched Power Supplies, has been attracting great interest from the scientific community that works toward the achievements of cost reduction, high efficiency, and reliability. In this context, this paper proposes a microprocessed control technique for sinusoidal input line current imposition in front-end ac–dc converters. This gave rise to an innovative sensorless boost converter, named in this work as PFC-Boost-CSL. The proposed method is based on experimental acquisition of gate-drive signal sequences for different load conditions. These signals correspond to a complete cycle of the AC input voltage and are recorded in the microcontroller memory in order to be reproduced when used in a boost converter without current sensor. In the operation of PFC-Boost-CSL, a suitable switching sequence is sent to drive the power switch in order to minimize output voltage error and maintain a sinusoidal input current. Aiming to prove the proposed control concept, a 600W PFC-Boost-CSL prototype was built and analyzed in laboratory and the main experimental results are presented herein. |
---|---|
ISSN: | 0141-9331 1872-9436 |
DOI: | 10.1016/j.micpro.2014.03.002 |