Prandtl and Rayleigh number dependence of heat transport in high Rayleigh number thermal convection
Results from direct numerical simulation for three-dimensional Rayleigh–Bénard convection in samples of aspect ratio $\Gamma = 0. 23$ and $\Gamma = 1/ 2$ up to Rayleigh number $\mathit{Ra}= 2\ensuremath{\times} 1{0}^{12} $ are presented. The broad range of Prandtl numbers $0. 5\lt \mathit{Pr}\lt 10$...
Gespeichert in:
Veröffentlicht in: | Journal of fluid mechanics 2011-12, Vol.688, p.31-43 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Results from direct numerical simulation for three-dimensional Rayleigh–Bénard convection in samples of aspect ratio $\Gamma = 0. 23$ and $\Gamma = 1/ 2$ up to Rayleigh number $\mathit{Ra}= 2\ensuremath{\times} 1{0}^{12} $ are presented. The broad range of Prandtl numbers $0. 5\lt \mathit{Pr}\lt 10$ is considered. In contrast to some experiments, we do not see any increase in $\mathit{Nu}/ {\mathit{Ra}}^{1/ 3} $ with increasing $\mathit{Ra}$, neither due to an increasing $\mathit{Pr}$, nor due to constant heat flux boundary conditions at the bottom plate instead of constant temperature boundary conditions. Even at these very high $\mathit{Ra}$, both the thermal and kinetic boundary layer thicknesses obey Prandtl–Blasius scaling. |
---|---|
ISSN: | 0022-1120 1469-7645 |
DOI: | 10.1017/jfm.2011.354 |