Electrochemical performance of laser micro-structured nickel oxyhydroxide cathodes
This study describes the preparation and analysis of laser micro-structured nickel metal electrodes for application as a cathode material in micro-batteries based on the nickel oxyhydroxide chemistry. Using ultra-short pulse length lasers (picoseconds to femtoseconds); surface micro-structures in th...
Gespeichert in:
Veröffentlicht in: | Journal of power sources 2014-12, Vol.271, p.42-47 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This study describes the preparation and analysis of laser micro-structured nickel metal electrodes for application as a cathode material in micro-batteries based on the nickel oxyhydroxide chemistry. Using ultra-short pulse length lasers (picoseconds to femtoseconds); surface micro-structures in the form of ripples are rapidly generated at the surface of nickel metal cathodes. These ripple micro-structures, with a periodic spacing approximately equal to the wavelength of laser radiation used, are more commonly referred to as laser-induced periodic plasmonic structures (LIPPS). The electrochemical activity of the LIPPS nickel metal cathodes is investigated in aqueous KOH using cyclic voltammetry. Across a wide range of scan rates, the results of the voltammetry show that the formation of LIPPS yields a considerable enhancement in the electrochemical activity of the nickel surface. The observed enhancement is attributed to both the greater surface area of the rippled surface relative to a planar nickel surface and a thicker Ni sub(x), layer generated by the laser process. |
---|---|
ISSN: | 0378-7753 1873-2755 |
DOI: | 10.1016/j.jpowsour.2014.07.167 |