Texture Classification of 3D Surface Textures via Directional Quincunx Lifting

This thesis presents a new approach to classify 3D surface textures by using lifting transform with quincunx subsampling. Feature vectors are generated from eight different lifting prediction directions. We classify 3D surface texture images based on minimum Euclidean distance between the test image...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied Mechanics and Materials 2014-10, Vol.686 (Information Technology for Manufacturing Systems V), p.82-85
Hauptverfasser: Ju, Tong Sheng, Li, You Jiao, Gao, Meng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This thesis presents a new approach to classify 3D surface textures by using lifting transform with quincunx subsampling. Feature vectors are generated from eight different lifting prediction directions. We classify 3D surface texture images based on minimum Euclidean distance between the test images and the training sets. The feasibility and effectiveness of our proposed approach can be validated by the experimental results.
ISSN:1660-9336
1662-7482
1662-7482
DOI:10.4028/www.scientific.net/AMM.686.82