Mining Approximate Frequent Itemsets over Data Streams
This paper proposes a method based on Lossy Counting to mine frequent itemsets. Logarithmic tilted time window is adopted to emphasize the importance of recent data. Multilayer count queue framework is used to avoid the counter overflowing and query top-K itemsets quickly using a index table.
Gespeichert in:
Veröffentlicht in: | Applied Mechanics and Materials 2014-10, Vol.685 (Machine, Industry and Manufacturing Based on Applied-Information Technology IV), p.536-539 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper proposes a method based on Lossy Counting to mine frequent itemsets. Logarithmic tilted time window is adopted to emphasize the importance of recent data. Multilayer count queue framework is used to avoid the counter overflowing and query top-K itemsets quickly using a index table. |
---|---|
ISSN: | 1660-9336 1662-7482 1662-7482 |
DOI: | 10.4028/www.scientific.net/AMM.685.536 |