Interaction of stable colloidal nanoparticles with cellular membranes
Due to their ultra-small size, inorganic nanoparticles (NPs) have distinct properties compared to the bulk form. The unique characteristics of NPs are broadly exploited in biomedical sciences in order to develop various methods of targeted drug delivery, novel biosensors and new therapeutic pathways...
Gespeichert in:
Veröffentlicht in: | Biotechnology advances 2014-07, Vol.32 (4), p.679-692 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Due to their ultra-small size, inorganic nanoparticles (NPs) have distinct properties compared to the bulk form. The unique characteristics of NPs are broadly exploited in biomedical sciences in order to develop various methods of targeted drug delivery, novel biosensors and new therapeutic pathways. However, relatively little is known in the negotiation of NPs with complex biological environments. Cell membranes (CMs) in eukaryotes have dynamic structures, which is a key property for cellular responses to NPs. In this review, we discuss the current knowledge of various interactions between advanced types of NPs and CMs. |
---|---|
ISSN: | 0734-9750 1873-1899 |
DOI: | 10.1016/j.biotechadv.2013.11.012 |