Evaluating CMIP5 simulations of mixed layer depth during summer

The ability of CMIP5 models in simulating surface mixed layer depth (MLD) during summer is assessed using 45 climate models. Their ocean models differ greatly in terms of vertical mixing parameterizations and model configurations. In some models, effects of surface waves, Langmuir circulations, subm...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of geophysical research. Oceans 2014-04, Vol.119 (4), p.2568-2582
Hauptverfasser: Huang, Chuan Jiang, Qiao, Fangli, Dai, Dejun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The ability of CMIP5 models in simulating surface mixed layer depth (MLD) during summer is assessed using 45 climate models. Their ocean models differ greatly in terms of vertical mixing parameterizations and model configurations. In some models, effects of surface waves, Langmuir circulations, submesoscale eddies, as well as additional wind mixing are included to improve upper‐ocean simulation. Similar to findings by previous studies, the summer MLDs are significantly underestimated in most of the models. Compared with the observation, only five of these models have deeper summer MLDs in the Southern Ocean, eight models have deeper summer MLDs in the central North Atlantic Ocean, and nine models have deeper summer MLDs in the central North Pacific Ocean. This underestimation of MLD is not caused by sea surface forcing, because most of the models tend to overestimate the surface wind stress, while they underestimate the net surface heat flux. Therefore, insufficient vertical mixing in the upper ocean may still be one of the potential reasons for this systematic underestimation of MLD in the climate models. Key Points Simulated summer MLDs are greatly underestimated in most of CMIP5 models Insufficient vertical mixing is responsible for the bias Surface forcings are not the reason of this bias
ISSN:2169-9275
2169-9291
DOI:10.1002/2013JC009535