Measurement of gas transfer across wind-forced wavy air–water interfaces using laser-induced fluorescence

Optical distortions have previously prevented non-intrusive measurements of dissolved oxygen concentration profiles by Laser induced fluorescence (LIF) to within 200 μm of the air–water interface. It is shown that by careful experimental design, reliable measurements can be obtained within 28 μm of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Experiments in fluids 2008-02, Vol.44 (2), p.249-259
Hauptverfasser: Walker, James W., Peirson, William L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Optical distortions have previously prevented non-intrusive measurements of dissolved oxygen concentration profiles by Laser induced fluorescence (LIF) to within 200 μm of the air–water interface. It is shown that by careful experimental design, reliable measurements can be obtained within 28 μm of moving air–water interfaces. Consideration of previously unidentified optical distortions in LIF imagery due to non-linear effects is presented that is critical for robust LIF data processing and experimental design. Phase resolved gas flux measurements have now been accomplished along wind forced microscale waves and indicate that the highest mean gas fluxes are located in the wave troughs. The local mean oxygen fluxes as determined by LIF techniques can be reconciled to within 40% of those obtained by bulk measurement in the water. These data provide a new perspective on wind-wave enhancement of low solubility gas transfer across the air–water interface.
ISSN:0723-4864
1432-1114
DOI:10.1007/s00348-007-0398-8