Comparative proteomic analysis of two tobacco (Nicotiana tabacum) genotypes differing in Cd tolerance

Tobacco can easily accumulate cadmium (Cd) in leaves and thus poses a potential threat to human health. Cd-stress-hydroponic-experiments were performed, and the proteomic and transcriptional features of two contrasting tobacco genotypes Yun-yan2 (Cd-tolerant) and Guiyan1 (Cd-sensitive) were compared...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biometals 2014-12, Vol.27 (6), p.1277-1289
Hauptverfasser: Xie, Lupeng, He, Xiaoyan, Shang, Shenghua, Zheng, Weite, Liu, Wenxing, Zhang, Guoping, Wu, Feibo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Tobacco can easily accumulate cadmium (Cd) in leaves and thus poses a potential threat to human health. Cd-stress-hydroponic-experiments were performed, and the proteomic and transcriptional features of two contrasting tobacco genotypes Yun-yan2 (Cd-tolerant) and Guiyan1 (Cd-sensitive) were compared. We identified 18 Cd-tolerance-associated proteins in leaves, using 2-dimensional gel electrophoresis coupled with mass spectrometry, whose expression were significantly induced in Yunyan2 leaves but down-regulated/unchanged in Guiyan1, or unchanged in Yunyan2 but down-regulated in Guiyan1 under 50 µM Cd stress. They are including epoxide hydrolase, enoyl-acyl-carrier-protein reductase, NPALDP1, chlorophyll a – b binding protein 25, heat shock protein 70 and 14-3-3 proteins. They categorized as 8 groups of their functions: metabolism, photosynthesis, stress response, signal transduction, protein synthesis, protein processing, transport and cell structure. Furthermore, the expression patterns of three Cd-responsive proteins were validated by quantitative real-time PCR. Our findings provide an insight into proteomic basis for Cd-detoxification in tobacco which offers molecular resource for Cd-tolerance.
ISSN:0966-0844
1572-8773
DOI:10.1007/s10534-014-9789-5