Liquid encapsulated electrostatic energy harvester for low-frequency vibrations
This article presents the modeling, fabrication, and testing of liquid encapsulated energy harvester using polyvinylidene fluoride electrets. Unlike harvesters reported in previous literature, this liquid encapsulated energy harvester uses flowing liquid rather than conventional resonating structure...
Gespeichert in:
Veröffentlicht in: | Journal of intelligent material systems and structures 2013-01, Vol.24 (1), p.61-69 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This article presents the modeling, fabrication, and testing of liquid encapsulated energy harvester using polyvinylidene fluoride electrets. Unlike harvesters reported in previous literature, this liquid encapsulated energy harvester uses flowing liquid rather than conventional resonating structures to induce variable capacitance and is more suitable for low-frequency applications. Prototypes injected with three types of liquid (N-methyl-2-pyrrolidone, N, N-dimethylformamide, and glycerin) are tested in horizontal vibration and rotary motion mode, respectively. The results show that N, N-dimethylformamide–injected prototypes display the most desirable performance in horizontal vibration testing at 1–10 Hz due to high relative permittivity and low viscosity, with maximum output voltage of 2.32 V and power of 0.18 µW at 10 Hz. Glycerin-injected prototypes perform best at 0.1–1 Hz rotation due to effective movement and highest permittivity, with maximum output voltage of 11.46 V and power of 2.19 µW at 1 Hz. |
---|---|
ISSN: | 1045-389X 1530-8138 |
DOI: | 10.1177/1045389X12459590 |