Hidden Markov Model Based Dynamic Texture Classification

The stochastic signal model, hidden Markov model (HMM), is a probabilistic function of the Markov chain. In this letter, we propose a general nth-order HMM based dynamic texture description and classification method. Specifically, the pixel intensity sequence along time of a dynamic texture is model...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE signal processing letters 2015-04, Vol.22 (4), p.509-512
Hauptverfasser: Qiao, Yulong, Weng, Lixiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The stochastic signal model, hidden Markov model (HMM), is a probabilistic function of the Markov chain. In this letter, we propose a general nth-order HMM based dynamic texture description and classification method. Specifically, the pixel intensity sequence along time of a dynamic texture is modeled with a HMM that encodes the appearance information of the dynamic texture with the observed variables, and the dynamic properties over time with the hidden states. A new dynamic texture sequence is classified to the category by determining whether it is the most similar to this category with the probability that the observed sequence is produced by the HMMs of the training samples. The experimental results demonstrate the arbitrary emission probability distribution and the higher-order dependence of hidden states of a higher-order HMM result in better classification performance, as compared with the linear dynamical system (LDS) based method.
ISSN:1070-9908
1558-2361
DOI:10.1109/LSP.2014.2362613