Coherent control of a single ²⁹Si nuclear spin qubit

Magnetic fluctuations caused by the nuclear spins of a host crystal are often the leading source of decoherence for many types of solid-state spin qubit. In group-IV semiconductor materials, the spin-bearing nuclei are sufficiently rare that it is possible to identify and control individual host nuc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2014-12, Vol.113 (24), p.246801-246801
Hauptverfasser: Pla, Jarryd J, Mohiyaddin, Fahd A, Tan, Kuan Y, Dehollain, Juan P, Rahman, Rajib, Klimeck, Gerhard, Jamieson, David N, Dzurak, Andrew S, Morello, Andrea
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Magnetic fluctuations caused by the nuclear spins of a host crystal are often the leading source of decoherence for many types of solid-state spin qubit. In group-IV semiconductor materials, the spin-bearing nuclei are sufficiently rare that it is possible to identify and control individual host nuclear spins. This Letter presents the first experimental detection and manipulation of a single ²⁹Si nuclear spin. The quantum nondemolition single-shot readout of the spin is demonstrated, and a Hahn echo measurement reveals a coherence time of T₂=6.3(7)  ms—in excellent agreement with bulk experiments. Atomistic modeling combined with extracted experimental parameters provides possible lattice sites for the ²⁹Si atom under investigation. These results demonstrate that single ²⁹Si nuclear spins could serve as a valuable resource in a silicon spin-based quantum computer.
ISSN:1079-7114
DOI:10.1103/PhysRevLett.113.246801