Hospital Disaster Response Using Business Impact Analysis

The catastrophic Great East Japan Earthquake in 2011 created a crisis in a university-affiliated hospital by disrupting the water supply for 10 days. In response, this study was conducted to analyze water use and prioritize water consumption in each department of the hospital by applying a business...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Prehospital and disaster medicine 2014-12, Vol.29 (6), p.561-568
Hauptverfasser: Suginaka, Hiroshi, Okamoto, Ken, Hirano, Yohei, Fukumoto, Yuichi, Morikawa, Miki, Oode, Yasumasa, Sumi, Yuka, Inoue, Yoshiaki, Matsuda, Shigeru, Tanaka, Hiroshi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The catastrophic Great East Japan Earthquake in 2011 created a crisis in a university-affiliated hospital by disrupting the water supply for 10 days. In response, this study was conducted to analyze water use and prioritize water consumption in each department of the hospital by applying a business impact analysis (BIA). Identifying the minimum amount of water necessary for continuing operations during a disaster was an additional goal. Water is essential for many hospital operations and disaster-ready policies must be in place for the safety and continued care of patients. A team of doctors, nurses, and office workers in the hospital devised a BIA questionnaire to examine all operations using water. The questionnaire included department name, operation name, suggested substitutes for water, and the estimated daily amount of water consumption. Operations were placed in one of three ranks (S, A, or B) depending on the impact on patients and the need for operational continuity. Recovery time objective (RTO), which is equivalent to the maximum tolerable period of disruption, was determined. Furthermore, the actual use of water and the efficiency of substitute methods, practiced during the water-disrupted periods, were verified in each operation. There were 24 activities using water in eight departments, and the estimated water consumption in the hospital was 326 (SD = 17) m³ per day: 64 (SD = 3) m³ for S (20%), 167 (SD = 8) m³ for A (51%), and 95 (SD = 5) m³ for B operations (29%). During the disruption, the hospital had about 520 m³ of available water. When the RTO was set to four days, the amount of water available would have been 130 m³ per day. During the crisis, 81% of the substitute methods were used for the S and A operations. This is the first study to identify and prioritize hospital operations necessary for the efficient continuation of medical treatment during suspension of the water supply by applying a BIA. Understanding the priority of operations and the minimum daily water requirement for each operation is important for a hospital in the event of an unexpected adverse situation, such as a major disaster.
ISSN:1049-023X
1945-1938
DOI:10.1017/S1049023X14001022