Resistance to anti-EGFR therapy in colorectal cancer: from heterogeneity to convergent evolution
The EGFR-targeted antibodies cetuximab and panitumumab are used to treat metastatic colorectal cancers. Mutations in KRAS, NRAS, and BRAF and amplification of ERBB2 and MET drive primary (de novo) resistance to anti-EGFR treatment. Recently, the emergence of alterations in the same genes was detecte...
Gespeichert in:
Veröffentlicht in: | Cancer discovery 2014-11, Vol.4 (11), p.1269-1280 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The EGFR-targeted antibodies cetuximab and panitumumab are used to treat metastatic colorectal cancers. Mutations in KRAS, NRAS, and BRAF and amplification of ERBB2 and MET drive primary (de novo) resistance to anti-EGFR treatment. Recently, the emergence of alterations in the same genes was detected in patients who responded to EGFR blockade and then relapsed. These results illuminate a striking overlap between genes that, when mutated, drive primary and secondary resistance to anti-EGFR antibodies. Remarkably, although the mechanisms of resistance are genetically heterogeneous, they biochemically converge on key signaling pathways. This knowledge is being translated in the rational design of additional lines of therapy.
Anti-EGFR-targeted therapies are used for the treatment of metastatic colorectal cancer. Molecular heterogeneity impairs their efficacy by fuelling de novo and acquired resistance. In this review, we highlight how genetically distinct resistance mechanisms biochemically converge on a limited number of signaling pathways that can be therapeutically intercepted. |
---|---|
ISSN: | 2159-8274 2159-8290 |
DOI: | 10.1158/2159-8290.cd-14-0462 |