Redox Control and High Conductivity of Nickel Bis(dithiolene) Complex π‑Nanosheet: A Potential Organic Two-Dimensional Topological Insulator
A bulk material comprising stacked nanosheets of nickel bis(dithiolene) complexes is investigated. The average oxidation number is −3/4 for each complex unit in the as-prepared sample; oxidation or reduction respectively can change this to 0 or −1. Refined electrical conductivity measurement, involv...
Gespeichert in:
Veröffentlicht in: | Journal of the American Chemical Society 2014-10, Vol.136 (41), p.14357-14360 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A bulk material comprising stacked nanosheets of nickel bis(dithiolene) complexes is investigated. The average oxidation number is −3/4 for each complex unit in the as-prepared sample; oxidation or reduction respectively can change this to 0 or −1. Refined electrical conductivity measurement, involving a single microflake sample being subjected to the van der Pauw method under scanning electron microscopy control, reveals a conductivity of 1.6 × 102 S cm–1, which is remarkably high for a coordination polymeric material. Conductivity is also noted to modulate with the change of oxidation state. Theoretical calculation and photoelectron emission spectroscopy reveal the stacked nanosheets to have a metallic nature. This work provides a foothold for the development of the first organic-based two-dimensional topological insulator, which will require the precise control of the oxidation state in the single-layer nickel bisdithiolene complex nanosheet (cf. Liu, F. et al. Nano Lett. 2013, 13, 2842). |
---|---|
ISSN: | 0002-7863 1520-5126 |
DOI: | 10.1021/ja507619d |