Pathologic von Willebrand factor degradation with a left ventricular assist device occurs via two distinct mechanisms: Mechanical demolition and enzymatic cleavage
Objectives Bleeding is an important source of morbidity in patients with a left ventricular assist device. Evidence suggests a major role for von Willebrand factor. However, limited data exist to explain the mechanism(s) of von Willebrand factor degradation during left ventricular assist device supp...
Gespeichert in:
Veröffentlicht in: | The Journal of thoracic and cardiovascular surgery 2015, Vol.149 (1), p.281-289 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Objectives Bleeding is an important source of morbidity in patients with a left ventricular assist device. Evidence suggests a major role for von Willebrand factor. However, limited data exist to explain the mechanism(s) of von Willebrand factor degradation during left ventricular assist device support. We investigated whether left ventricular assist device–related shear stress and a disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13 (ADAMTS-13, the von Willebrand factor protease) altered von Willebrand factor metabolism. Methods Whole blood was collected from patients (n = 8) with a left ventricular assist device. von Willebrand factor multimers and degradation fragments were characterized with electrophoresis and immunoblotting. To investigate mechanisms, an in vitro model was developed to generate the supraphysiologic shear stress of a continuous-flow left ventricular assist device. Normal human blood (n = 8) was cycled in a laboratory vortexer (∼2400 rpm, shear stress ∼175 dyne/cm2 , 4 hours) to reproduce the pathologic degradation of von Willebrand factor that occurs during left ventricular assist device support. To investigate the specific mechanistic roles of shear stress and ADAMTS-13 in von Willebrand factor degradation, purified von Willebrand factor protein ± ADAMTS-13 protease were exposed to supraphysiologic shear stress in the vortexer. von Willebrand factor multimers and 11 von Willebrand factor degradation fragments were characterized with electrophoresis and immunoblotting. Results Left ventricular assist device support reduced large von Willebrand factor multimers and significantly increased 10/11 von Willebrand factor degradation fragments ( P |
---|---|
ISSN: | 0022-5223 1097-685X |
DOI: | 10.1016/j.jtcvs.2014.09.031 |